46 research outputs found

    Isotopic variation of parity violation in atomic ytterbium

    Full text link
    We report on measurements of atomic parity violation, made on a chain of ytterbium isotopes with mass numbers A=170, 172, 174, and 176. In the experiment, we optically excite the 6s2 1S0 -> 5d6s 3D1 transition in a region of crossed electric and magnetic fields, and observe the interference between the Stark- and weak-interaction-induced transition amplitudes, by making field reversals that change the handedness of the coordinate system. This allows us to determine the ratio of the weak-interaction-induced electric-dipole (E1) transition moment and the Stark-induced E1 moment. Our measurements, which are at the 0.5% level of accuracy for three of the four isotopes measured, allow a definitive observation of the isotopic variation of the weak-interaction effects in an atom, which is found to be consistent with the prediction of the Standard Model. In addition, our measurements provide information about an additional Z' boson.Comment: 19 pages, 4 figures, 2 table

    Nanomechanical Detection of Itinerant Electron Spin Flip

    Full text link
    Spin is an intrinsically quantum property, characterized by angular momentum. A change in the spin state is equivalent to a change in the angular momentum or mechanical torque. This spin-induced torque has been invoked as the intrinsic mechanism in experiments ranging from the measurements of angular momentum of photons g-factor of metals and magnetic resonance to the magnetization reversal in magnetic multi-layers A spin-polarized current introduced into a nonmagnetic nanowire produces a torque associated with the itinerant electron spin flip. Here, we report direct measurement of this mechanical torque and itinerant electron spin polarization in an integrated nanoscale torsion oscillator, which could yield new information on the itinerancy of the d-band electrons. The unprecedented torque sensitivity of 10^{-22} N m/ \sqrt{Hz} may enable applications for spintronics, precision measurements of CP-violating forces, untwisting of DNA and torque generating molecules.Comment: 14 pages, 4 figures. visit http://nano.bu.edu/ for related paper

    Constraints on Non-Newtonian Gravity from Recent Casimir Force Measurements

    Full text link
    Corrections to Newton's gravitational law inspired by extra dimensional physics and by the exchange of light and massless elementary particles between the atoms of two macrobodies are considered. These corrections can be described by the potentials of Yukawa-type and by the power-type potentials with different powers. The strongest up to date constraints on the corrections to Newton's gravitational law are reviewed following from the E\"{o}tvos- and Cavendish-type experiments and from the measurements of the Casimir and van der Waals force. We show that the recent measurements of the Casimir force gave the possibility to strengthen the previously known constraints on the constants of hypothetical interactions up to several thousand times in a wide interaction range. Further strengthening is expected in near future that makes Casimir force measurements a prospective test for the predictions of fundamental physical theories.Comment: 20 pages, crckbked.cls is used, to be published in: Proceedings of the 18th Course of the School on Cosmology and Gravitation: The Gravitational Constant. Generalized Gravitational Theories and Experiments (30 April- 10 May 2003, Erice). Ed. by G. T. Gillies, V. N. Melnikov and V. de Sabbata, 20pp. (Kluwer, in print, 2003

    Tests of Lorentz symmetry using antihydrogen

    Full text link
    Signals of CPT and Lorentz violation are possible in the context of spectroscopy using hydrogen and antihydrogen. We apply the Standard-Model Extension, a broad framework for Lorentz breaking in physics, to various transitions in the hydrogen and antihydrogen spectra. The results show an unsuppressed effect in the transition between the upper two hyperfine sublevels of the ground state of these systems. We also discuss related tests in Penning traps, and recent work on Lorentz violation in curved spacetime.Comment: 11pp, invited talk at PQE 37 Conference, Snowbird, Utah, USA, 2-6 Jan 200

    A Motion Illusion Reveals Mechanisms of Perceptual Stabilization

    Get PDF
    Visual illusions are valuable tools for the scientific examination of the mechanisms underlying perception. In the peripheral drift illusion special drift patterns appear to move although they are static. During fixation small involuntary eye movements generate retinal image slips which need to be suppressed for stable perception. Here we show that the peripheral drift illusion reveals the mechanisms of perceptual stabilization associated with these micromovements. In a series of experiments we found that illusory motion was only observed in the peripheral visual field. The strength of illusory motion varied with the degree of micromovements. However, drift patterns presented in the central (but not the peripheral) visual field modulated the strength of illusory peripheral motion. Moreover, although central drift patterns were not perceived as moving, they elicited illusory motion of neutral peripheral patterns. Central drift patterns modulated illusory peripheral motion even when micromovements remained constant. Interestingly, perceptual stabilization was only affected by static drift patterns, but not by real motion signals. Our findings suggest that perceptual instabilities caused by fixational eye movements are corrected by a mechanism that relies on visual rather than extraretinal (proprioceptive or motor) signals, and that drift patterns systematically bias this compensatory mechanism. These mechanisms may be revealed by utilizing static visual patterns that give rise to the peripheral drift illusion, but remain undetected with other patterns. Accordingly, the peripheral drift illusion is of unique value for examining processes of perceptual stabilization

    Chimeric aptamers in cancer cell-targeted drug delivery

    Get PDF
    Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern Pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities

    Neutrinos

    Get PDF
    229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms
    corecore